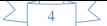
MATHEMATICS

PROBABILITY, PERMUTATIONS AND COMINATIONS_SYNOPSIS

•	The numbers of ways of dividing 'mn' different things into 'm' equal
	groups each containing 'n' elements
	(mn)!
	$=\frac{(mn)!}{m!(n!)^m}$
•	The numer of ways of distributing 'mn' different things equally among 'm'
	$\mathbf{persons} = \frac{(mn)!}{(n!)^m}$
	$[n!]^m$
•	The number of diagonal in an n sided polygon $= n_{c_2} - n$
•	For $0 \le r, s \le n$, if $n_{c_r} = n_{c_{s,r}}$ then either $r = s$ or $r + s = n$.
•	$n_{c_r} + n_{c_{r-1}} = n + 1_{C_r}$
•	If p things are alike of one kind and 'q' things are alike of second kind and
	r things are alike of third kind, then the number of ways of selecting only
	number of things (one or more) out of these $(p+q+r)$ things is
	(p+1)(q+1)(r+1)-1.
•	The number of ways of selecting one or more things out of 'n' distinct
	things $= 2^n - 1$.
•	If p_1, p_2, \dots, p_k are distinct primes and $\alpha_1, \alpha_2, \dots, \alpha_k$ are the integers, then
	the number of the divisors of
	$n = p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_k^{\alpha_k}$ is $(\alpha_1 + 1)(\alpha_2 + 1), \dots, (\alpha_k + 1)$ this includes '1' and 'n'
•	In the above, the numbers of proper divisors of n is
	$(\alpha_1+1)(\alpha_2+1)[\alpha_{k+1}]-2.$
•	Exponent of a prime 'p' in n ! is the largest integer k such that p^k divides n !

 \leq

1


>

•	$E_p(n!) = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \dots \text{ where } \left[\bullet \right] = G.I.F$
•	$n_{P_r} = n.^{n-1}P_{r-1} = n(n-1).^{n-2}P_{r-2}etc$
•	$n_{\mathbf{P}_r} = {}^{(n-1)} P_r + r {}^{(n-1)} P_{(r-1)}$
•	Sum of all r – digit numbers that can be formed using the given 'n' non- zero digits $[1 \le r \le n \le 9]$ is
	$^{(n-1)}P_{(r-1)}(sum of the given digits) \times 1111(rtimes)$
•	In the above. If 'O' is one digit among n digit , the we get that the sum of the r-digit numbers that can be formed using the given n digits including 'O'
	$= \left\{ {^{(n-1)}P_{(r-1)} \times sum \ of \ the \ given \ digits \times 1111 \ (r \ times)} \right\}$
	$-\left\{ ^{(n-2)}P_{(r-2)}\times sum \ of \ the \ given \ digits\times 1111\ (r-1)\ times \right\}.$
•	Let $f : A \to B$ be a function then
	a)The number of functions $= n(B)^{n(A)}$
	b)The number of injections = $\begin{cases} {}^{n(B)}P_{n(A)}, & \text{if } n(A) \le n(B) \\ O & \text{if } n(A) > n(B) \end{cases}$
	c)The number of surjection's $= 2^{n(A)} - 2$, if $n(B) = 2$
•	If there are n things in a row, a permutation of these n things such that none of then occupies its original position is called a derangement of n thigns.
	The number of derangements of n distinct things
	$= n! \left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \dots + (-1)^n \frac{1}{n!} \right)$
•	Palindrome : A number or a word which reads same either from left to right or from right to left is called a palindrome, examples, 120021, ROTOR etc

 \langle

•	The number of palindromes with r distinct letters that can be formed using
	the given n distinct letters is
	a) $n^{r/2}$, if r is even
	r+1
	b) $n^{\frac{r+1}{2}}$, if r is odd
•	The number of circular permutations of n distinct things taken all at a time
	$n^{\frac{r+1}{2}} = (n-1)!$
•	In case of the garlands of flowers, chains of beads etc. clock-wise and anti
	clock –wise arrangements will be treated as identical there fore number of $\binom{n}{2}$
	circular permutations of n things $=\frac{(n-1)!}{2}$.
•	The number of linear permutations of 'n' things in which there are p like things of one kind (α ' like things of 2^{nd} kind, p like things of thind bind and
	things of one kind, 'q' like things of 2^{nd} kind, r like things of third kind and
	rest different is $\frac{n!}{p!q!r!}$
•	The number of different subsets of 'r' elements of a set containing 'n' elements $= n_{c_r}$.
•	$n_{C_r} = n_{C_{n-r}}$ The numbers of ways of dividing $m + n$ things in to two group
	containing m things and n things is $\frac{(m+n)!}{m!n!}$ (m,n are distinct +ve integers)
•	If A and B are two events then
	(i) P (both A , B occurs) = P $(A \cap B)$,
	(ii) P (at least one of A , B occurs) = $P(\overline{A} \cup \overline{B})$
	(iii) P (none of A , B occurs) = $P(\overline{A} \cap \overline{B})$
	(iv) P (exactly one of A,B occurs) =

•	If A,B and C are three events then						
	(i) P (at least one of A , B , C occurs) = $P(A \cup B \cup C)$						
	(ii) P (at two A,B,C occur)						
	$= P(A \cap B \cap \overline{C}) + P(A \cap \overline{B} \cap C) +$						
	$P(\overline{A} \cap B \cap C) + P(A \cap B \cap C)$						
	$= P(A \cap B) + P(B \cap C) + P(C \cap A) - 2P(A \cap B \cap C)$						
	(iii) P (exacty two of A,B,C occurs						
	$= P(A \cap B \cap \overline{C}) + P(A \cap \overline{B} \cap C) + P(\overline{A} \cap B \cap C)$						
	$= P(A \cap B) + P(B \cap C) + P(C \cap A) - 3P(A \cap B \cap C)$						
	(iv) P (exactly one of A,B,C occurs)						
	$= P\left(A \cap \overline{B} \cap \overline{C}\right) + P\left(\overline{A} \cap B \cap \overline{C}\right) + P\left(\overline{A} \cap \overline{B} \cap C\right)$						
	$= P(A) + P(B) + P(C) - 2P(A \cap B)$						
	$-2P(B \cap C) - 2P(C \cap A) + 3P(A \cap B \cap C)$						
•	When n fair dice are rolled once the number of favourable cases to get the sum r is coefficient of x^r in the multinomial expansion of $(x^1 + x^2 + x^3 + x^4 + x^5 + x^6)^n$						
•	Two Person game : (infinite G.P mode 1) If p and q are the probabilities of success and failure of a game in which A and B play and if A starts the game then,						

•	Dearrangement Problems
	If n letters corresponding to n envelopes with address on them are placed in the envelopes one in each, then
	i)probability that all the letters are placed in right envelopes $=\frac{1}{n!}$
	ii) probability that all letters are not in right envelopes (or at least one letter
	is placed in wrongly addressed envelope) $=1-\frac{1}{n!}$
	iii) probability that all letters go into wrongly addressed envelopes
	$= \left[\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + \frac{(-1)^n}{n!}\right]$
	(iv) Probability that exactly r letters are in right
	Envelops = $\frac{1}{r!} \left(\frac{1}{2!} - \frac{3}{3!} + \frac{1}{4!} - \dots + (-1)^{n-r} \frac{1}{(n-r)!} \right)$
•	Using the vertices of a polygon having n sides a triangles is constructed at random. The probability that the triangle so formed is such that no side of
	the polygon is side of the triangle is $\frac{(n-4)(n-5)}{(n-1)(n-2)}$
•	Out of n persons at a round table, three persons are selected at random then the probability that no two of them are consecutive is $\frac{(n-4)(n-5)}{(n-1)(n-2)}$.

 \leq

PROBABILITY, PERMUTATIONS AND COMINATIONS_ASSIGNMENT

- A fair coin whose faces are marked with 3 and 4 instead head and tail, is tossed 4 times. The odds against the sum of the numbers thrown being less than 15, is
 1) 1:15
 2) 5:11
 3) 1:3
 4) 3:13
- 2. Let A be the event that an year chosen at random, is a leap year and B be the event that an year

chosen at random to have 52 sundays, then which of the following statement is wrong **1**) P(B) = 23/28 **2**) P(A/B) = 5/23 **3**) $P(A/B^c) = 2/5$ **4**) $P(A^c/B) = 2/5$

3. An arbitrary cube has four blank faces, one face marked 2 and another marked 3. Then the probability of obtaining a total of exactly 12 in 5 throws is

1)
$$\frac{5}{1296}$$
 2) $\frac{5}{1944}$ **3**) $\frac{5}{2592}$ **4**) $\frac{11}{1294}$

4. An unbiased die is rolled 4 times. Out of 4 face values obtained, the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5 is

1)
$$\frac{16}{81}$$
 2) $\frac{1}{81}$ **3**) $\frac{80}{81}$ **4**) $\frac{65}{81}$

5. If 100 boys are arranged at random along a circle then the odds against to arrange two specified boys of those 100 come together is

1) 2:972) 97:23) 2:984) 98:2

6. If 10 identical coins are distributed among 4 children at random. The probability of distributing so that each child gets atleast one coin is

1)
$$\frac{12}{143}$$
 2) $\frac{42}{143}$ **3**) $\frac{17}{143}$ **4**) $\frac{101}{143}$

7. If a is an integer and $a \in (-5, 30]$ then the probability that the graph of the function $y = x^2 + 2(a+4)x - 5a + 64$ is strictly above the x-axis is

1) $\frac{1}{5}$ **2**) $\frac{8}{25}$ **3**) $\frac{8}{35}$ **4**) $\frac{27}{35}$

8. If A and B are events of a random experiment such that $P(A \cup B) = \frac{4}{5}, P(\overline{A} \cup \overline{B}) = \frac{7}{10}$ and $P(B) = \frac{2}{5}$, then P(A) =1) $\frac{9}{10}$ 2) $\frac{8}{10}$ 3) $\frac{7}{10}$ 4) $\frac{3}{5}$

6

9.	A and B are two ind	ependent events. The	probability that both	A and B occur is 1/6 and the							
	probability that neither of them occur is $\frac{1}{3}$. Then the probability of occurrence of A is										
	probability that note		3								
	1) $\frac{1}{2}$	2) $\frac{1}{4}$	3) $\frac{1}{6}$	4) $\frac{1}{8}$							
10.	The odds in favour o	of A winning a game	of chess against B ar	re 5:2. If 3 games are played then							
	the odds in favour of	f A winning atleast or	ne game are								
	1) 335 : 8	2) 8 : 335	3) 335 343	4) none							
11.	India plays two mate	ndia plays two matches each with West Indies and Australia. In any match the pro-									
	and 0.50 respectivel	0.50 respectively. Assuming that the outcomes are independent, the probability of get									
	atleast 7 points is										
	1) 0.8750	2) 0.0875	3) 0.0625	4) 0.0250							
12.	Suppose x is a binomial set of x is a binomial set of x is a binomial set of x and y	mial distribution with	n parameters $n = 100$	and $p = \frac{1}{2}$ then $P(x = r)$ is							
	maximum when r =			2							
	1) 50	2) 32	3) 33	4) 67							
13.	Six coins are tossed	6400 times. The prob	pability of getting 6 h	heads x times using poison							
	distribution is										
	1) 6400 <i>e</i> ^{-<i>x</i>}	2) $\frac{6400e^{-x}}{\angle x}$	3) $\frac{e^{-100}100^x}{x!}$	4) e^{-100}							
14.	If $\alpha = {}^m C_2$, then ${}^\alpha C_2$	is equal to									
	1) $^{m+1}C_4$	2) $^{m-1}C_4$	3) $3^{m+2}C_4$	4) $3^{m+1}C_4$							
15.	The number of possi	ible outcomes in a th	row of n ordinary dic	e in which at least one of the dice							
	shows an odd numb	er is									
	1) 6 ^{<i>n</i>} -1	2) 3 ^{<i>n</i>} -1	3) $6^n - 3^n$	4) none of these							
16.	The number of word	ls of four letters conta	aining equal number	of vowels and consonants, where							
	repetition is allowed	, is									
	1) 105 ²	2) 210×243	3) 105×243	4) 150×21 ²							
17.	The number of ways	s in which ten candida	ates $A_1, A_2,, A_{10}$ can	be ranked such that A_1 is always							
	above A_{10} is										
	1) 5 !	2) 2 (5!)	3) 10!	4) $\frac{1}{2}(10!)$							
				2							

>

 \langle

18.	There are two bags each containing m balls. If a man has to select equals number of balls from									
10.	both the bags the number of ways in which he can do so if he must choose at least one ball from									
	each bag is									
	1) m^2	2) ^{2m} C	3) $^{2m}C_m - 1$	4) none of these						
19.										
17.		In election, the number of candidates is one greater than the person to be elected. If a voter vote in 254 ways, the number of candidates is								
	1) 7	2) 10	3) 8	4) 6						
20.		,	,							
20.	The number of triangle that can be formed with 10 points as vertices, n of them being collinear, is 110. Then n is									
	1) 3	2) 4	3) 5	4) 6						
21.	,	,	,	s A,B,C so that B gets one more						
	than A and C gets tv									
	1) 16!	2) 415171	a) 16!	1) none of these						
	1) $\frac{16!}{4!5!7!}$	2) 4!5!7!	3) $\frac{16!}{3!5!8!}$	4) none of these						
22.	Let $x_1, x_2,, x_k$ be the	e divisors of positive	integer 'n' (including	g 1 and n). If $x_1 + x_2 + \dots + x_k = 75$,						
	then $\sum_{i=1}^{\infty} 1/x_i$ is equal	to								
	1) $\frac{75}{n^2}$	2) $\frac{75}{n}$	3) $\frac{75}{k}$	4) none of these						
23.	The total number of	ways in which n^2 nu	mber of identical bal	ls can be put in n numbered boxes						
	(1,2,3,n) such the	at i^{th} box contains at	least i number of ball	s is						
	1) $^{n^2}C_{n-1}$	2) $^{n^2-1}C_{n-1}$	3) $\frac{n^2+n-2}{2}C_{n-1}$	4) none of these						
24.	Number of ways in	which 25 identical thi	ngs be distributed an	nong five persons if each gets odd						
	number of things is									
	1) ${}^{25}C_4$	2) ${}^{12}C_8$	3) ¹⁴ C ₁₀	4) $^{13}C_3$						
25.	The total number of	ways in which three	distinct numbers in A	.P. can be selected from the set						
	$\{1, 2, 3, \dots, 24\}$ is equal to									
	1) 66	2) 132	3) 198	4) none of these						
26.	The number of three	-digit numbers of the	form xyz such that	$x < y$ and $z \le y$ is						
	1) 276	2) 285	3) 240	4) 244						

>

 \langle

27.	A man has three friends. The number of ways he can invite one friend everyday for dinner on										
	six successive nights so that no friend is invited more than three times is										
	1) 6422) 3203) 4204) 510										
28.	3. There are $(n+1)$ white and $(n+1)$ black balls each set numbered 1 to $n+1$. The number of wa										
	in which the balls can be arranged in a row so that the adjacent balls are of different colours is										
	1) $(2n+2)!$ 2) $(2n+2) \ge 2$ 3) $(n+1) \ge 2$ 4) $2\{(n+1)!\}^2$										
29.	The total number of positive integral solution of $15 < x_1 + x_2 + x_3 \le 20$ is equal to										
	1) 6852) 7853) 11254) none of these										
30.	If n objects are arranged in a row, then the number of ways of selecting three of these objects so										
	that no two of them are next to each other is										
	1) ${}^{n-2}C_3$ 2) ${}^{n-3}C_2$ 3) ${}^{n-3}C_3$ 4) none of these										

 \geq

	KEY SHEET													
1)	2	2)	4	3)	3	4)	1	5)	2	6)	2	7)	1
8	5)	3	9)	1	10)	1	11)	2	12)	3	13)	3	14)	4
1	5)	3	16)	4	17)	4	18)	2	19)	3	20)	3	21)	1
2	2)	2	23)	3	24)	3	25)	2	26)	1	27)	4	28)	4
2	9)	1	30)	1										

